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Abstract. A class of functional equations containing delay terms in which the delay is small
compared with an overall scale, or difference equations with slowly varying coefficients, is analysed
using the WKB method. A particular example in which a periodic solution is required is analysed
in detail. Results analogous to quantization conditions are discussed as are turning points. The
approximate solutions obtained by the WKB method are compared with exact solutions where
available in simple cases and with numerical integration and excellent agreement is obtained.

1. Introduction

The WKB method [1–3] enables approximate solutions of Schrödinger’s equation to be
found over a range of values of the independent variable with good accuracy away from
turning points. In bound-state eigenvalue problems, connection formulae together with the
requirement of bounded solutions at infinity generate the Bohr–Sommerfeld quantization
condition for the eigenvalues [4]. Alternative formulations of the WKB method exist [5]
as well as generalizations [6] and Liouville–Green approximations provide a more general
approach to the approximate solution of equations of the Schrödinger type [7–11].

For delay equations with non-constant coefficients, a variety of approximation methods
exist [12], including infinite-series solutions [13, 14] and Fourier series methods for equations
with periodic coefficients [15]. The behaviour of a class of delay equations containing a small
delay has been studied [16] as well as the existence of periodic solutions of difference equations
with periodic coefficients [17].

In this paper we examine a particular class of linear delay equation equivalent to a
two- or three-term difference equation. In the two-term case, a formal analytic solution is
possible; this case is useful for comparison purposes. In the three-term case, no such analytic
solution is possible. Nevertheless, a numerical solution can be generated and compared with
the approximate solution derived using the WKB method. Although we study a specific
problem in detail, the methods are more generally applicable. The specific problem is useful
in that it contains many features of the WKB method of solution, including periodic solutions,
eigenvalues and the possibility of turning points. In the next section we begin with some
general considerations. Following this we apply the method to the specific problem before
widening the discussion and drawing parallels with the solution of differential equations of
the Schrödinger type. As is the case with the WKB method when applied to such differential
equations, the functional or difference equations studied here are linear and therefore may
have the general form

∑M
n=−N fn(x) y(x + nε) = 0. The principal benefit of the method when
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applied to two- or three-term equations (for example, when N = 0 and M = 1 or 2) is that a
substantial part of the analysis can be carried out analytically.

2. Basic equations

In the WKB method for obtaining an approximate solution to the differential equation

ε2 d2y

dx2
= F(x) y (1)

the form of the solution is taken as

y(x) = y(0) exp

{
1

ε

∫ x

0
[S0(t) + εS1(t)] dt

}
(2)

where the terms in the integrand of (2) are the first two terms in an infinite series truncated to
order ε [4]. On substituting (2) into (1) and equating like powers of ε at the zeroth and the first
order, we obtain the two solutions

y(x) ∝ [F(x)]−1/4 exp

{
±1

ε

∫ x

0
[F(t)]1/2 dt

}
. (3)

An alternative approach [18] based on the assumption that F(x) is slowly varying again results
in the solutions given in (3). We note here that equation (1) and the form (2) are both singular
as ε → 0 and that, after substituting and cancelling y(x) on both sides of (1), a zeroth-order
term results on the left-hand side because the coefficient ε2 cancels the factor ε−2 arising
from differentiating (2) twice. Clearly, therefore, if there were an additional term of the form
g(x)ε dy/dx in the differential equation, a zeroth-order term would result from this and a more
complicated, although still quadratic, equation for S0 would be found.

Given the above discussion, we can now consider delay terms of the form y(x + ε), and
note that a Taylor expansion in powers of ε results in the infinite series

y(x + ε) =
∞∑

n=0

εny(n)(x)

n!
(4)

where each term has a power of ε which is the same as the order of the derivative. Hence
inserting (2) into (4) will give an infinite series in S0 to order zero. It is not difficult to see
that the sum of this series is exp S0. If the appropriate series for S1 can also be summed, we
can write down corresponding terms up to order ε for y(x + ε). This is a possible approach,
but a simpler alternative is to expand (2) for the corresponding term with a delayed or shifted
argument, as follows.

For greater generality, consider y(x + nε), where for practical applications −2 � n � 2.
Then from (2)

y(x + nε) = y(0) exp

{ ∫ x+nε

0
[S0(t) + εS1(t)] dt

}
. (5)

Hence
y(x + nε)

y(x)
= exp

{
1

ε

∫ x+nε

x

[S0(t) + εS1(t)] dt

}
. (6)

Considering the integral in (6) and expanding both S0(t) and S1(t) about the point t = x,
retaining only those terms which will give a result of order ε or ε2 on integration, we obtain∫ x+nε

x

[S0(t) + εS1(t)] dt =
∫ x+nε

x

[S0(x) + (t − x)S ′
0(x) + εS1(x)] dt

= nεS0(x) + ε2
{

1
2n2S ′

0(x) + nS1(x)
}
. (7)
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Dividing (7) by ε and taking the exponential, we obtain the product of two exponentials the
second of which has an argument proportional to ε. This too may be expanded up to first order
in ε. Hence, the zeroth- and first-order terms of (6) are

y(x + nε)

y(x)
= [

1 + ε
{

1
2n2S ′

0(x) + nS1(x)
}]

exp{nS0(x)}. (8)

We notice now that equations containing only terms proportional to y(x), y(x + ε) and
y(x + 2ε) or y(x), y(x − ε) and y(x − 2ε) will be quadratic in the quantity exp S0 and allow
complete approximate solution by the WKB method. For example, if

y(x) + p(x)y(x − ε) + q(x)y(x − 2ε) = 0 (9)

then

exp 2S0 + p(x) exp S0 + q(x) = 0. (10)

We note that if there are turning points of (9), where p2 = 4q, these manifest themselves
clearly in the solution for S0, which contains (p2 − 4q)1/2, in the same way that those of the
differential equation (1) do in the solution (3). In the next section, we study a specific example
in detail.

3. Detailed example

The equation to which we shall apply the method outlined above is a model of active mode-
locking [19] in which the pulse profile V satisfies the difference equation

Vi+n = (1 − R)giVi + RVi+n−1 (11)

or equivalently the functional equation

V (x + nε) = (1 − R)g(x)V (x) + RV (x + (n − 1)ε). (12)

Here R is a constant mirror reflectivity close to but less than unity, g(x) is the gain factor
and V (x) and g(x) are periodic with period 2π . The variable x, 0 � x � 2π , measures the
normalized position in the cavity and ε is the ratio of the mismatch time (the cavity round-trip
time minus the time between pumping pulses) and the round-trip time. The value of n is either
zero or ±1. When n = 0 or 1, equation (12) gives a simple relationship between adjacent pulse
values and a formal solution containing a product of values of the function g. The function g

in this model must be specified but, for all choices, g contains a constant multiplicative factor
f , related to the average inversion in the laser medium, which is unknown initially and must
be determined from the requirement of a self-reproducing pulse. Hence we may consider f to
be an eigenvalue determined by the requirement that V (2π) = V (0), making the numerical
solution a non-trivial one. For n = −1, no straightforward formal solution exists and the
eigenvalue problem remains. To indicate the presence of this eigenvalue, we shall write gf (x).
We will first study the simple case n = 1 in order to compare the exact and approximate
solutions.

When n = 1, we have

V (x + ε) = [(1 − R)gf (x) + R]V (x) (13)

the solution of which can be written in the form

V (nε) = V (0)

n−1∏
k=0

[(1 − R)gf (kε) + R] (14)
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where n = 1, 2, . . . , N = 2π/ε. The condition that V (2π) = V (0) then gives the equation

N−1∏
k=0

[(1 − R)gf (kε) + R] = 1 (15)

or, equivalently,

N−1∑
k=0

ln[(1 − R)gf (kε) + R] = 0 (16)

for the eigenvalue f . We now compare this with a WKB solution to (13). Dividing (13) by
V (x) and using (8) with n = 1 we obtain[

1 + ε
{

1
2S ′

0 + S1
}]

exp S0 = (1 − R)gf (x) + R. (17)

Hence

S0(x) = ln[(1 − R)gf (x) + R] (18)

and

1
2S ′

0 + S1 = 0. (19)

In the WKB solution, we require the term

exp

{ ∫
S1(x) dx

}
= exp{−S0/2} = [(1 − R)gf (x) + R]−1/2 (20)

using (18) and (19). The WKB solution is therefore

V (x) = V (0)

[
(1 − R)gf (0) + R

(1 − R)gf (x) + R

]1/2

exp

{
1

ε

∫ x

0
ln[(1 − R)gf (t) + R] dt

}
. (21)

The relationship between this approximate solution and (14) can easily be found, as follows.
Evaluating the integral in (21) with x = nε using the trapezium rule, we find∫ nε

0
ln[(1 − R)gf (t) + R] dt ≈ 1

2ε

{
ln[(1 − R)gf (0) + R] + ln[(1 − R)gf (nε) + R]

+2
n−1∑
k=1

ln[(1 − R)gf (kε) + R]

}
(22)

so that from (21)

V (nε) = V (0)[(1 − R)gf (0) + R]
n−1∏
k=1

[(1 − R)gf (kε) + R] (23)

which is the same as (14). On setting V (2π) = V (0), the eigenvalue equation for f becomes,
within the WKB approximation,∫ 2π

0
ln[(1 − R)gf (t) + R] dt = 0. (24)

The required value of f must therefore be such that the integrand changes sign. Since gf (t) is
periodic with period 2π and resembles a simple sinusoid, this integrand usually has two sign
changes in the range of integration. Similar results to those above are obtained for the case
n = 0 of (12).



Approximate solutions of functional equations with small delay 6631

When n = −1, equation (12) becomes

V (x − ε) = (1 − R)gf (x)V (x) + RV (x − 2ε). (25)

Dividing by V (x) and using (8) with n = −1 and −2 gives

[1 + ε{ 1
2S ′

0 − S1}] exp{−S0} = (1 − R)gf (x) + R[1 + ε{2S ′
0 − 2S1}] exp{−2S0}. (26)

Equating like orders of ε, we obtain the equations

R exp{−2S0} − exp{−S0} + (1 − R)gf (x) = 0 (27)

and

1
2S ′

0 − S1 = 2R(S ′
0 − S1) exp{−S0}. (28)

Hence we obtain from (27) the two solutions

S0(x) = − ln

[
1

2R

{
1 ± √

1 − 4R(1 − R)gf (x)
}]

. (29)

Solving (28) for S1, we again find that the integral of S1 can be calculated in terms of S0.
Explicitly, ∫ x

S1(t) dt = S0(x) − 1
2 ln | exp S0(x) − 2R| (30)

so that

exp

{ ∫ x

S1(t) dt

}
= exp S0(x)

| exp S0(x) − 2R|1/2
. (31)

This term can be expressed in terms of gf (x) and the resulting solutions of (25) are found from
(2) to be

V (x) = V (0)

[
1 ± √

1 − 4R(1 − R)gf (0)

1 ± √
1 − 4R(1 − R)gf (x)

]1/2[
1 − 4R(1 − R)gf (0)

1 − 4R(1 − R)gf (x)

]1/4

× exp

{
−1

ε

∫ x

0
ln

[
1

2R

{
1 ± √

1 − 4R(1 − R)gf (t)
}]

dt

}
. (32)

Note that the solution diverges at the turning points where 1 − 4R(1 − R)gf (x) = 0 and that
these points may or may not exist depending on the value of f . Assuming there are no turning
points, then the requirement that V (2π) = V (0) results in two possible equations for f , since∫ 2π

0
ln

[
1

2R

{
1 ± √

1 − 4R(1 − R)gf (t)
}]

dt = 0. (33)

However, it is straightforward to show that if R is close to unity, the minus sign in (33) yields
an integrand that is always negative allowing no solution to (33). Hence the periodic solution
is that with the plus sign in (32) and (33) so that f is determined by∫ 2π

0
ln

[
1

2R

{
1 +

√
1 − 4R(1 − R)gf (t)

}]
dt = 0. (34)
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4. Results

We now show results obtained for n = ±1 using the formulae (21), (24), (32) and (34). The
specific gain function chosen is gf (x) = f exp(m sin x), where f is the eigenvalue and m is
the modulation index [19]. We first set R and m and use (24) and (34) to perform a simple
iteration to find the corresponding value of f . We then plot the function V (x) against x for
each set of n, R, m and f values. Throughout, Simpson’s integration rule is used with a step
size equal to the value of ε, here 0.01. Figure 1(a) displays V (x) for n = 1 and R = 0.95 with
m = 0.5 (full curve), m = 1 (broken) and m = 2 (dotted). Figure 1(b) shows the function
V (x) with the same value of R and values of m for n = −1. In figure 2 we show the variation
in V (x) with R choosing m = 0.5. Figure 2(a) displays V (x) for n = 1 with R = 0.8 (full),
R = 0.9 (broken) and R = 0.95 (dotted). Figure 2(b) shows V (x) for the same m and R

values and n = −1.

Figure 1. The function V (x) normalized to unit height with R = 0.95, ε = 0.01, m = 0.5 (full
curve), m = 1 (broken curve) and m = 2 (dotted curve) for (a) n = 1 and (b) n = −1.

Figure 2. The function V (x) normalized to unit height with m = 0.5, ε = 0.01, R = 0.8 (full
curve), R = 0.9 (broken curve) and R = 0.95 (dotted curve) for (a) n = 1 and (b) n = −1.

A comparison was made between these results and a numerical solution of (13) and (25).
Both are ‘shooting problems’ for which the value of f is unknown at the start but must be
found so that V (Nε) = V (0). The case of n = 1 is more straightforward in that a value
of f can be chosen, V (Nε) found by iteration given a value V (0), and then f adjusted until
V (Nε) = V (0). The case of n = −1 is more difficult since to begin the iteration both V (0) and
V (ε) must be specified together with the value of f , and hence there are two parameters which
must be adjusted until V (Nε) = V (0). In fact, the values of f calculated using the WKB
approximation were used as the basis for the numerical work to reduce the computation time
considerably. When the function V (x) is plotted in each case, no visible difference between



Approximate solutions of functional equations with small delay 6633

the numerical and WKB solutions were found. We further studied the comparison between
numerical and WKB solutions for the same m and R values, while changing the value of ε

from 0.01 to 0.1. Small differences of the order of 1% between solutions could be detected
for ε = 0.1 consistent with the terms of order ε2 being neglected in the WKB solutions. We
note that the Simpson’s rule integrations employed in evaluating the WKB solutions have an
accuracy of order ε4.

5. Discussion

A further connection may be made between the three-term difference equation (11) with
n = −1

Vi−1 = (1 − R)giVi + RVi−2 (35)

and a differential equation of the type (1). Changing Vi in (35) to

Vi = yi

(
1

2(1 − R)

)i−1 i−2∏
j=0

1

gj+2
(36)

we obtain [20] the difference equation

yi+2 − 2yi+1 + yi = (1 − 4R(1 − R)gi+1)yi . (37)

Recognizing the left-hand side as a divided difference for the second derivative we have the
same form ε2y ′′ = F(x) y as in (1) if the spacing between successive values Vi is ε. An
alternative approach would be to use the WKB solution of (1) together with the transformation
(36).

Although the problem in section 3 has a finite range, a general three-term difference
equation could be solved using the WKB approximation if the coefficients were slowly varying.
For example, if gi contained only iε, where ε  1, then the new independent variable becomes
t = iε and Vi+1 becomes V (t + ε). It is also straightforward to show that the exact solutions
of a three-term difference equation with constant coefficients are retrieved using the WKB
method which truncates in this simple case.

A rather more naive approach may be imagined to the solution of particular cases of the
equations studied in this paper. Consider, for example, equation (13) and an approximate
solution obtained by Taylor expansion of V (x + ε) ≈ V (x) + εV ′(x). We then obtain

εV ′ = (1 − R)(gf (x) − 1)V (38)

which can readily be integrated. However, if V and V ′ are both of order unity, and for arbitrary
R, a consistent solution is obtained only if gf (x) − 1 remains of order ε. For the particular
form of gf (x) chosen above, this restricts the value of m. In fact, the solution of (38) can
readily be shown to be the expansion of the WKB solution for small m. The WKB solution
does not suffer from this restriction since it includes relevant contributions from all derivatives
of V .

For the range of values of parameters considered in this paper, the question of turning
points has not arisen. For non-periodic solutions, the existence of turning points would require
the construction of connection formulae and substantial further work would be needed to
completely solve the problem. The principal benefit of the WKB solutions, a closed-form
expression which is straightforward to calculate, may be lost in that case.

In principal, the technique described in this paper could be applied to functional-
differential equations with a true derivative term, with the usual requirement of the WKB
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method that in the equation to be solved an nth-order derivative term must be multiplied by
εn. However, it is easily seen that, for example, a term εy ′(x) generates S0 + εS1 from (2),
whereas a term f (x) y(x + ε) generates, from (8), f (x)[1 + ε{S ′

0/2 + S1}] exp S0, resulting in
a transcendental equation for S0. Again, the benefit of a straightforward analytic solution is
lost.
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